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Abstract: In this research, we find the exact traveling wave solutions involving parameters of the generalized Hirota-Satsuma couple KdV 
system according to the modified extended tanh-function method with the aid of Maple 16. When these parameters are taken special 
values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the modified extended tanh-function 
method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. 
Comparison between our results and the well-known results will be presented. 

Index Terms: The generalized Hirota-Satsuma couple KdV system; The modified extended tanh-function method; traveling wave solutions; 
solitary wave solutions; dark and bell soliton solutions. 
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1 INTRODUCTION                                                                     

o one can deny the important role which played by the 
nonlinear partial differential equations in the descrip-

tion of many and a wide variety of phenomena not only in 
physical phenomena, but also in plasma, uid mechanics, 
optical fibers, solid state physics, chemical kinetics and 
geochemistry phenomena. So that, during the past ive dec-
ades, a lot of method was discovered by a diverse group of 
scientists to solve the nonlinear partial differential equa-
tions. For examples tanh - sech method [15],[20] and [22], 
extended tanh - method [16], [9] and [24], sine – cosine 
method [23], [21] and [26], homogeneous balance method 
[4], the exp( ( )φ ζ− )-expansion Method [14], Jacobi ellip-
tic function method [3], [5], [17] and [28], F-expansion 
method [2], [25] and [12], exp-function method [11] and 

[10], trigonometric function series method [36], 
G
G
′ 

 
 

  

Expansion method [13], [18], [33] and [30], the modi_ed 
simple equation method [1], [31], [34], [32], [35] and 
[29], the modified extended tanh-function method [8], [7], 
[19], [6] so on. 

The objective of this article is to apply the modified ex-
tended tanh-function method for finding the exact traveling 
wave solution of the generalized Hirota-Satsuma couple 
KdV system [27], which plays an important role in mathe-
matical physics. The rest of this paper is organized as fol-
lows: In section 2, we give the description of the modified 
simple equation method. In section 3, we use this method to 
find the exact solutions of the nonlinear evolution equations 
pointed out above. In section 5, conclusions are given. 
2 Description of the modified extended tanh-
function method 
Consider the following nonlinear evolution equation 

    
 (2.1) 

Since, P is a polynomial in  and its partial deriva-
tives. In the following, we give the main steps of this meth-
od  
Step 1. We use the traveling wave solution in the form 
  

           
 (2.2) 

 
Where c is a positive constant, to reduce Eq. (2.1) to the 
following ODE: 
 

 
 (2.3) 

 
Where P is a polynomial in u (ξ) and its total derivatives, 

while 
duu
dξ

′ = . 

Step 2. Suppose that the solution of ODE (2.3) can be ex-
pressed  
 

( )1
0

0
( ) ,

M
i

i i
i

u a a bξ ϕ ϕ−

=

= + +∑  
 

 (2.4) 

where ,i ia b  are arbitrary constants to be determined, such 
that 0 0m ma or b≠ ≠ , while ϕ  satisfies the Riccati equa-
tion 

2 ,bϕ ϕ′ = +  (2.5) 
 
where b  is a constant. Eq.(2.5) admits several types of so-
lutions according to  

N  
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Case 1. If 0,b <  then 

( )

( )

tanh ,

coth .

b b

or

b b

ϕ ξ

ϕ ξ

= − − −

= − − −

 

 
 

(2.6) 

 
Case 2. If 0,b >  then  

( ) ( )tan , cot .b b or b bϕ ξ ϕ ξ= =  (2.7) 
    

Case 3. If 0,b =  then  
1 .ϕ
ξ

= −  
(2.8) 

    

Step 3. Determine the positive integer m in Eq.(1.4) by bal-
ancing the highest order derivatives and the nonlinear 
terms. 
Step 4. Substitute Eq.(1.4) along Eq.(1.5) into Eq.(1.3) and 
collecting all the terms of the same power 

( ), 0, 1, 2, 3,...i iϕ = ± ± ±  and equating them to zero, we 
obtain a system of algebraic equations, which can be solved 
by Maple or Mathematica to get the values of ia  and ib . 
Step 5. Substituting these values and the solutions of 
Eq.(1.5) into Eq.(1.4) we obtain the exact solutions of 
Eq.(1.1). 
3 Application 
Here, we will apply the modified extended tanh-function 
method described in Sec.2 to find the exact traveling wave 
solutions and the solitary wave solutions of the generalized 
Hirota-Satsuma couple KdV system[27]. We consider the 
generalized Hirota-Satsuma couple KdV system 

( )21 3 3 ,
4

1 3 ,
2
1 3 .
2

t xxx x x

t xxx x

t xxx x

u u uu v w

v v uv

w w uw

 = + + − +

 = − −

 = − −

 

 
 
 
 

(3.1) 
    

When w = 0, Eq. (3.1) reduce to be the well known Hirota-
Satsuma couple KdV equation. Using the wave transfor-
mation u(x; t) = u (ζ ), v(x; t) = v (ζ ), w(x; t) = w (ζ ),  

ζ  = k ( )1x tλ−   carries the partial differential equation 
(3.1) into the ordinary differential equation 

( )3 2
1

3
1

3
1

1 3 3 ,
4

1 3 ,
2
1 3 .
2

k u k u kuu k v w

k v k v kuv

k w k w kuw

λ

λ

λ

 ′′ ′′′ ′− = + + − +

 ′ ′′′ ′− = − −

 ′ ′′′ ′− = − −

 

 
 
 
 

(3.2) 
    

Suppose we have the relations between (u and v) and (w 
and v) ( )2u v vα β γ⇒ = + +  and (w = Av + B) where 

, , , Aα β γ  and B are arbitrary constants. Substituting these 
relations into second and third equations of Eq. (3.2) and 
integrating them, we get the same equation and integrate it 
once again we obtain 

( )2 2 4 3 2
1 1 22 2 2 3 2 ,k v v v v c v cα β λ γ′ = − − + − + +  (3.3) 

    
Where 1c  and 2c  is the arbitrary constants of integration, 
and hence, we obtain 

( )
( )

( )
( )

2 2 2 2

4 3 2
1

1 2

3 2

1 1

2 2

2 2 3
2

2

2 3
2 .

2 3

k u k v k v v

v v v
c v c

v v
v

v c

α α β

α β λ γ
α

α β
α β

λ γ

′′ ′ ′′= + +

 − − + −
=  

+ + 
 − −

+ +  
+ − +  

 

 
 
 

(3.4) 
    

So that, we have 
3 0.P P m P′′ + − =  (3.5) 

    
Where 

( ) ( ) ( )

( )
( )

( )( )

1 2 2
1

2
1

2
1

2 4
3 1 3 1

2 4
3 3
2 2 2 2

1 1
2 6 42

2 2 21
2 2

2 1
2 3 2 4 3

1 1

2

1 , ,
22 2 6

44 , ,
4 4

16 2

16 3

56 481 ,
16 126 4
12 16

32 8

3

c v a P

A
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c c

B
c c c
c

a
k

βζ ζ
αα β λ α β α β γ

β λ γβα
γ λ β

λ β λ β

γβ γβ

λ γβ γ λ β

β βγ λ β
β γ λ

λ γ λ β β γ

β

= = −
+ −

−−
= =

− −

 −
 
− + 
 + + − =
 − + −− + −  
+ − 
 
− − + 

−
=

2 3

1 2

22 6 , .
2

am
k
αλ γ

α
  −

+ − = 
 

 

Balancing between the highest order derivatives and non-
linear terms appearing in P ′′   and 3P  ⇒   
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 (N + 2 = 3N) ⇒  (N = 1). So that, by using Eq. (2.4) we 
get the formal solution of Eq. (3.5) 

( ) 1
0 1 .bP a aζ φ

φ
= + +  

(3.6) 

Substituting Eq. (3.6) and its derivative into Eq. (3.5) and 
collecting all term with the same power of 

3 2 2 3, ,..., ,φ φ φ φ− −   we obtained: 
3

1 12 0,a m a+ =  (3.7) 
2

0 13 0,m a a =  (3.8) 
2 2

1 1 0 1 1 12 3 3 0,a b a m a a m a b+ + + =  (3.9) 
3

0 0 0 1 16 0,a m a m a a b+ + =  (3.10) 
2 2

1 1 0 1 1 12 3 3 0,b b b m a b m a b+ + + =  (3.11) 
2

0 13 0m a b =  (3.12) 
2 3

1 12 0.b b m b+ =  (3.13) 

Solving above system of algebraic equations by using Ma-
ple 16, we obtain 

0 1 1
2 28 , 0, , .b a a b b

m m
− −

= − = = ± =    

Thus the solution is 

( ) 2 2 .bP
m m

ζ φ
φ

− −
= ±   

(3.14) 

Sothat let us discuss the following cases: 
Case 1. If b < 0, then 

( ) ( ) ( )
2 2 1tanh .

tanh
b bP b

m m b
ζ ζ

ζ
= ± −

−
  

(3.15) 

Or 

( ) ( ) ( )
2 2 1coth .

coth
b bP b

m m b
ζ ζ

ζ
= ± −

−
  

(3.16) 

 
Case 2. If b > 0, then 

( ) ( ) ( )
2 2 1tan .

tan
b bP b

m m b
ζ ζ

ζ
− −

= ±   
(3.17) 

 
Or  

( ) ( ) ( )
2 2 1cot .

cot
b bP b

m m b
ζ ζ

ζ
− −

= ±   
(3.18) 

 
Case 3. If b = 0, then 

( ) 2 1 2 .P b
m m

ζ ζ
ζ

− −
= ±   

(3.19) 

Note that: 

All the obtained results have been checked with Maple 16 
by putting them back into the original equation and found 
correct. 
4 Physical Meaning of each solution: 
Here, we explain the physical meaning of solution since we 
can not that: 
Eqs.(3.15), (3.16), (3.17), (3.18) and (3.19) depend on 
some parameters like m; b when this parameters take spe-
cial values we can draw the solutions and explain what is 
the mean of this figures. 
For example: when ( )14, 2, 1, 2m b k λ= − = − = =   
So that Eqs. (3.15) and (3.16) has four figures which repre-
sent singular soliton solutions. Also, 
when ( )14, 2, 1, 2m b k λ= − = = =   So that Eqs. (3.17) 
and (3.18) has four figures which represent singular soliton 
solutions. Also, when ( )12, 2, 1, 2m b k λ= − = = =  So 
that Eq. (3.19) has two figures which represent singular 
soliton solutions. 
5 Conclusions 
The modified extended tanh-function method has been suc-
cessfully used to _nd the exact traveling wave solutions of 
some nonlinear evolution equations. As an application, the 
traveling wave solutions for the generalized Hirota Satsuma 
couple KdV system which has been constructed using the 
modified extended tanh-function method. Let us compare 
between our results obtained in the present article with the 
well-known results obtained by other authors using differ-
ent methods as follows: Our results of the generalized Hiro-
ta-Satsuma couple KdV system are new and different from 
those obtained in [8] It can be concluded that this method is 
reliable and propose a variety of exact solutions NPDEs. 
The performance of this method is e_ective and can be ap-
plied to many other nonlinear evolution equations. The so-
lutions represent the solitary traveling wave solution for the 
generalized Hirota-Satsuma couple KdV system. 
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